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As many cities are investing in street improvements or transportation 
infrastructure upgrades to provide better bike access or more com-
plete bike networks, many practitioners, planners, and policy makers 
are seeking more conclusive evidence about the economic value of bike 
infrastructure and bike facilities. With the use of residential property 
values as indicators of consumer preferences for bicycle infrastructure, 
many scholars have shown the importance of green space and off-street 
bike trails as amenities valuable to property owners. However, empiri-
cal evidence on the relationship of on-street bike facilities and property  
values remains relatively inconsistent. The unique focus of this study 
was advanced bike facilities that represented higher levels of bike pri-
ority or bike infrastructure investments shown to be more desirable to 
a larger portion of the population. Through the separate estimation of 
ordinary least squares hedonic pricing models and spatial autoregressive 
hedonic models of single and multifamily properties, it was found that 
proximity to advanced bike facilities (measured by distance) had signifi-
cant and positive effects on all property values, which highlighted house-
hold preferences for high-quality bike infrastructure. Furthermore, the 
study showed that the extensiveness of the bike network (measured by 
density) was a positive and statistically significant contributor to the 
prices for all property types, even after proximity was controlled for 
with respect to bike facilities and other property, neighborhood, and 
transaction characteristics. Finally, estimated coefficients were applied 
to assess the property value impacts of the Green Loop (i.e., the pro-
posed Portland, Oregon, signature bike infrastructure concept), which 
illustrated the importance of considering the accessibility and the 
extensiveness of bike facility networks.

Many cities across the country, as part of Complete Streets initia-
tives or to promote community livability, have engaged in street 
improvement or transportation infrastructure upgrade projects 
that increase access and mobility for pedestrians and bicyclists. In 
the determination of property value, the importance of public ameni-
ties (e.g., proximity to green spaces), transportation networks (e.g., 
airports, highways, rail stations) and school quality has been widely 
discussed in urban economics, planning, and real estate research. 
However, the specific contribution of bike infrastructure and facil-
ities to residential property values is relatively undocumented  
or inconsistent, which presents difficulties in the justification of 

further allocations of resources to high-quality, bicycle-related 
infrastructure.

Relevant research in this area in general has focused on urban 
greenways, defined as “linear corridors of open space along rivers, 
streams, historic rail lines, or other natural or man-made features” 
(1), or “trails with greenbelts” (2). Proponents of urban greenways 
typically point to benefits from recreational use, active transportation-
related public health benefits (3), or mode shift–related transportation  
benefits, as the result of new bike lanes or improvements in exist-
ing facilities (e.g., congestion relief, reductions in greenhouse gas 
emissions, reductions in noise) (4–7). Greenways may provide addi-
tional benefits in the form of environmental services (e.g., habitat 
conservation or carbon sequestration) and aesthetic value (1). Other 
researchers have focused on whether active transportation infra-
structure investments generate positive returns on economic devel-
opment and business activities (8–10). To the extent that residential 
properties serve as home bases for people’s activities and provide 
access to nearby infrastructure, accessibility to desirable bike facili-
ties and the extensiveness of a nearby bike facility network should 
be key determinants of residential property values. In other words, 
residential property values may serve as indicators of consumer 
preferences for bicycle infrastructure.

The present analysis served to quantify household preferences  
for better bicycle facilities. Property value increases may benefit exist-
ing homeowners as well as local governments through an increase in 
property tax revenue collection and overall economic development. 
However, a key consideration is that renters or other vulnerable pop-
ulations may experience negative consequences if they are priced 
out of a burgeoning real estate market. The geographic distributions 
of accessibility to advanced bike facilities and the extensiveness 
of the bike facility network and their correlations to various socio-
economic characteristics are other important considerations within 
this context. It is clear that advanced bike facilities and other urban 
greenways that achieve complementarities with existing transporta-
tion infrastructure networks and city plans tend to produce better 
outcomes.

This study contributed to the existing literature not only by exam-
ining the relationship between advanced bike facilities (i.e., bike-
priority facilities and separated bike lanes) and residential property 
values but also by focusing on two major components of bike priority 
facilities: (a) ease of access (distance) and (b) extensiveness of bike 
network (density). The paper begins with a brief summary of the  
relevant literature and methodologies. The results then are presented 
of a hedonic pricing model and of spatial autoregressive (SAR) 
models applied to Portland, Oregon. An illustration is presented of 
how the modeling results may be applied to estimate the property 
value impacts of Portland’s proposed Green Loop concept. The paper 
concludes with a discussion of the policy implications of this research 
and future research directions.
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LITERATURE REVIEW

Although this study focused on the property value impacts of bike 
facilities, it was important to understand various other determinants 
of residential home prices to appropriately account for them. In an 
application of Rosen’s (11) hedonic (or implicit) pricing framework, 
Mohammad et al. categorized three classes of contextual factors 
that influenced property value: economic factors (e.g., supply and 
demand or economic conditions), internal factors (e.g., size, age, 
quality of the property), and external factors (e.g., location, surround-
ing amenities, transportation network) (12). The literature contains a 
large number of empirical studies that investigated how a combina-
tion of these factors might have affected residential property values 
(13, 14). Many documented the impacts of school district quality 
(15), neighborhood characteristics (16), environmental quality (17), 
and recreational amenities (18).

Transportation accessibility mainly enters the equation through 
variations of the bid-rent theory by which consumer and business 
willingness to pay for a property is inversely proportional to its 
distance to destinations such as the central business district (19). 
Researchers such as Ryan (20) and Duncan (21) illustrated the poten-
tial property value impacts of access to transportation facilities, but 
much of the research emphasis was placed on access to highways, 
heavy rail, or light rail. In general, the empirical evidence points to 
positive or neutral property value impacts as the result of proximity 
to green space or to off-street recreational trails (1, 2, 22). However, 
the present study found relatively scant empirical evidence from 
specific investigations of the property value impacts of on-street bike 
facilities (23).

Hedonic pricing analysis, a multivariate regression methodology, 
is the predominant technique used to estimate the marginal implicit 
prices of property characteristics and amenities. Lindsey et al. applied 
this methodology to three Indianapolis, Indiana, greenway corridors 
and found that, in two out of the three modeled corridors, the impact 
on values was significant and positive when the properties were 
located within a ½-mi buffer from the greenways (1). With the use  
of a similar methodological framework in San Antonio, Texas, 
Asabere and Huffman found homes that were near or that abutted 
trails, greenways, and trails with greenbelts were correlated with 2% 
to 5% price increases (2). Similar positive property value impacts 
were found when street network distance was used as an alternative 
measure for proximity and access to greenbelts in Austin, Texas (24). 
Recent studies have expanded on previous hedonic price models by 
controlling for spatial autocorrelation effects between green space 
and property values (i.e., the correlation between the values of neigh-
boring homes or the likelihood of green space). Studies, such as ones 
by Conway et al. (22) and Parent and vom Hofe (25) found that prox-
imity to green space or bike trailheads had a significant and positive 
impact on residential property values, even after they controlled for 
spatial autocorrelation effects.

Studies by Krizek (26) and Welch et al. (23) are examples in the 
scarce literature in which hedonic models were employed to exam-
ine the differential property value impacts of various types of bike 
facilities (e.g., off-street trails, on-street facilities, multiuse paths). 
Krizek’s hedonic pricing models suggested that proximity to bike 
trails and on-street bike facilities in suburban areas of Minneapolis, 
Minnesota, had a negative impact on home values and that other 
types of bike facilities had no impact (26). Welch et al. used a lon-
gitudinal spatial hedonic model in Portland, Oregon, to show that 
shorter distances to off-street trails had a positive impact on property 
values, compared with the negative impact that stemmed from 
proximity to on-street bike lanes (23).

This present study aimed to fill the research gap in understanding 
the property value impacts of bike facilities by including not only 
a variable that measured proximity to the nearest bike facility but 
also a variable that described the density of bike facilities within a 
buffer zone around the property. Further, this unique study focused 
on advanced bike facilities, which represented higher levels of bike 
priority or bike infrastructure investments, and which have been 
shown to be more desirable to a larger portion of the population  
(7, 27). The study results provide essential information to assist pol-
icy makers, planners, community members, and other stakeholders 
to understand the potential property value impacts of bike infrastruc-
ture investments, particularly with respect to the decision-making and 
resource allocation processes.

METHODOLOGY AND DATA

In line with the existing literature, this present study first used a 
general hedonic price specification to characterize the impacts of 
various factors on residential property values with respect to data 
from Portland, Oregon. The model then was tested for spatial effects 
(i.e., the existence of spatial lag or spatial error), which may indicate 
greater influence of property sales in close proximity to the subject 
property than those that occur farther away. Finally, the coefficient 
estimates of the models were applied to a proposed bike infrastructure 
investment in Portland to illustrate the magnitude and distribution 
of property value impacts within a policy context.

The general ordinary least squares (OLS) specification is as 
follows:

P T H R Bi i i i i i= β + β + β + β + β + ε0 1 2 3 4

where

 Pi = property sale price;
 Ti =  vector that includes transaction characteristics (e.g., year 

and season of the sale), which serve as proxies for general 
economic factors;

 Hi =  vector of internal property characteristics (e.g., age, size, and 
property tax liability of the property);

 Ri =  vector of external neighborhood or regional characteristics 
(e.g., school quality, crime rate); and

 Bi = vector of bike facility characteristics.

This specification exclusively incorporates property tax character-
istics, given the high level of heterogeneity in property tax liabilities 
generated through Oregon’s Measure 5 and Measure 50, shown to 
be significantly capitalized into property values (28). Furthermore, 
neighborhood fixed effects were incorporated into the OLS specifi-
cations to capture inherent neighborhood differences that might have 
contributed to property value differences but had not been captured 
through the existing variables. Each of the estimated coefficients 
described the marginal value to the homeowner of amenities in 
each vector.

Although many of the variables used in residential property value 
hedonic models are spatial by definition, homebuyers, real estate pro-
fessionals, and many scholars have asserted that home values often 
are heavily influenced and determined by the sale prices of nearby 
properties (22, 29). This spatial dependency effect can be incorpo-
rated into the modeling in the form of price correlations in a given 
location with prices in nearby locations. To ignore such spatial auto-
correlation may lead to inefficient coefficient estimates in the OLS 
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specification (22). Two commonly used SAR models that account 
for spatial autocorrelation are spatial lag and spatial error models: 
the first interprets spatial dependence as a consequence of omitted 
variable bias, whereas the latter interprets spatial dependence as 
the result of model misspecifications. The general spatial lag model 
form is

Y WY X= ρ + β + ε

where

	ρWY =  spatially lagged dependent variable that represents the 
omitted variable in the regression model,

 ρ = spatial lag parameter,
 W =  spatial weighting matrix that represents the interaction 

between different locations (22), and
 X = vector of all variables included in the OLS model.

The general spatial error model form is

Y X W v= β + λ ε +

where the original error term from the OLS specification is modeled 
as an autoregressive error term (ε = λWε + v) and

where

	 λ = spatial error parameter,
 Wε =  spatial error, interpreted as the mean error from neighboring 

locations, and
 v = independent model error (22, 29).

Lagrange multiplier tests were conducted to identify the appropriate 
SAR models. Another key consideration was the specification of 
the spatial weighting matrix, W, a matrix that describes the magni-
tude of impact of nearby property sales on the property in question. 
Two row-standardized methods were used to construct matrices for 
each residential property, k-nearest neighbors (i.e., 4-nearest neigh-
bors) and specific distance-based neighbors (i.e., within 1-mi buffer 
zone). Figure 1 illustrates these two methods for a sample property 
sold in southwest Portland. Figure 1a shows that the sale price of 
the subject property was influenced most heavily by the nearest four 
or six properties sold in the specified time frame. Figure 1b shows 
the influence of all properties within a 1-mi or ½-mi buffer zone 
around the subject property. Again, statistical tests were performed 
to determine the spatial weighting methodology.

To construct the data set for the estimations, residential property 
tax roll data from 2010 to 2013 were collected from Multnomah 
County (i.e., where Portland, Oregon is located). This study focused 
on the impact of bike facilities on residential properties, includ-
ing single-family homes (SFHs) and multifamily homes (MFHs)  
(e.g., condominiums). Thus other property types were excluded. Dis-
tressed transactions (e.g., foreclosures, short sales), or other types 
of transactions that were not at arm’s length, also were excluded, 
because they would not have accurately reflected the actual property 
values. The distribution of property sale transactions and sale prices 
are shown in Figure 2. SFH transactions occurred relatively evenly 
throughout the City of Portland, whereas MFH transactions were much 
more concentrated in the city center with relatively higher sales prices.

With the geolocation of each property, other regional and bike 
facility characteristics were joined spatially. To capture school quality, 
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FIGURE 1  Spatial weighting matrix diagrams for two neighboring methods: (a) k-nearest neighbors and (b) specific distance-based neighbors 
(• = properties sold, 2010 to 2013).
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each property was assigned an elementary school catchment area 
in which the average was adjoined of state-published reading and 
math scores (measured by the percentage of students who exceeded 
state standards in the catchment area). Safety was represented by 
crime rates (i.e., number of crimes per 1,000 residents in 2012), and 
was incorporated from a neighborhood incidence of crime data set 
from the Portland Police Bureau. Each property was matched spatially 
with (a) the distance to the central business district, which represented 
access to jobs and other central city amenities, and measured as the  
distance from each neighborhood centroid to Portland downtown, 
and (b) the access to walking-distance neighborhood amenities from 
a proprietary source (i.e., walk score application). Because residential 
property sales were affected not only by overall economic and market 
conditions but also by seasonality, a sale year and a sale season vari-
able (i.e., June to September nonrainy season) were incorporated to 
capture these trends in the market (30).

In addition to property characteristics (e.g., square footage and 
building age), a property tax measure was calculated, which was an 
assessed value to real market value (AV/RMV) ratio that described the 
percentage of a property’s real market value on which property taxes 
were assessed. For example, a property with a 0.60 AV/RMV ratio will 
be assessed property taxes only on 60% of its real market value, which 
represents a significant tax advantage over that of a similar property 
with a ratio of 0.90. Liu and Renfro showed that the AV/RMV ratio 
was a significant determinant of property sale prices (28).

In general, there are two broad categories of bike facilities:  
(a) off-street paths, which include exclusively off-road bicycle facil-
ities and multiuse paths used jointly by all nonmotorized modes; 
and (b) on-street facilities (e.g., simple striped bike lanes, separated 
bike lanes, bike boulevards). Studies have shown that cyclists prefer 
separated bike lanes to striped bike lanes (with simple striping and 
no additional separation between cyclists and vehicular traffic), and 
more advanced bike facilities may attract bicyclists to detour from 
the most direct route to take advantage of such facilities (7, 27, 31).  
The present study focused on the property value impacts of advanced 
bike facilities, including cycle tracks (i.e., separated bike lanes), 
buffered bike lanes, and bike boulevards within the context of 
Portland.

Two key variables were constructed to represent advanced bike 
facility characteristics at each property: (a) the distance to the 
nearest advanced bicycle facility and (b) the advanced bike facil-
ity density within a ½-mi radius [½ mi is a commonly used buffer 
zone distance used to measure bike facility accessibility in bike and 
greenway studies (1)]. The first variable represented the availability  
and ease of access from each property, and the second variable 
represented the extent of the network around the property. Figure 3  
shows the geographic distribution of these facilities in Portland 
(i.e., distance to nearest facility and density of bike facilities). On 
average, the properties were only 0.68 mi (3,602 ft) away from the 
nearest advanced bike facility and had access to more than 0.74 mi 
(3,896 ft) facilities within a ½-mi radius. However, the spatial dis-
tribution was uneven within the city boundaries and dropped off 
significantly along the edges of the city.

Table 1 presents descriptive statistics on characteristics with respect 
to transactions, property, the region, and bicycle facilities. During 
the 2010 to 2013 time period, 20,122 residential property sales 
transactions occurred in Portland, at an average price of $303,834. 
SFHs tended to garner higher prices and were larger, older, and had 
lower AV/RMV ratios than MFHs. The MFHs that sold tended to 
be located in the central part of the city, with better walkability and 
access to city center amenities but with higher crime rates. In large 
part because of the concentration of MFHs in central locations with 
higher density, MFHs tended also to have better access to advanced 
bike facilities (i.e., at a shorter distance) and a denser network of 
facilities.

FINDINGS

A pooled OLS hedonic price regression was first conducted on 
all residential property sales. However, the Chow test (F = 53.05, 
p < .01) indicated the existence of structural change between the 
determinants of SFH and MFH values, and supported separate SFH 
and MFH property type restricted models. As shown in Table 2, in 
Models 1 and 2 (SFH.1 and MFH.1), the specifications included 
transaction characteristics (i.e., sale year and seasonality fixed effects), 

(a) (b)

FIGURE 2  Distribution and values of property transactions by neighborhoods (2010 to 2013): (a) SFHs and (b) MFHs.
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property characteristics, regional characteristics, and bicycle facility 
characteristics. In Models 3 and 4 (SFH.2 and MFH.2), neighbor-
hood fixed effects were introduced to control for any unobserved 
heterogeneity across neighborhoods as an alternative to the regional 
variables that were calculated at the neighborhood scale (e.g., crime 
rate, walk score, distance to central business district). The R-squared 
values ranged from 0.728 to 0.821 for these estimated models, which 
indicated that the specifications described approximately between 
72.8% and 82.1% of the property sale price variation.

As expected, residential property values were affected positively 
and were statistically significant with respect to property size, prox-
imity to the central business district, and better school districts. 

Each additional square foot contributed between $128 and $231 of 
additional value, depending on the property type and model speci-
fication. Age contributed positively to property values in SFHs but 
was shown to have a negative impact on MFHs, possibly because of 
the inherent value of historical building structures, and also because 
older homes might be associated with larger lot sizes. The estimated 
coefficient for the AV/RMV ratio was statistically significant and 
negative for SFHs, which indicated that consumers were willing to 
pay higher prices for properties that had relatively lower property 
tax liabilities. The property tax effect did not appear to be significant 
for MFHs, possibly because of the much smaller range of AV/RMV 
ratios that existed in this property type, which tended to be newer 

(a) (b)

FIGURE 3  Distribution of advanced bike facilities in Portland: (a) distance to nearest advanced bike facilities and (b) density of advanced 
bike facilities.

TABLE 1  Descriptive Statistics

Variable Overall Average SFH MFH

Number of observations, n 20,122 17,163 2,959

Transaction characteristics
  Sale price ($) 303,834 (20,000–

2,700,000)
312,639 (20,000–

2,700,000)
252,764 (23,834–

1,560,000)
  Sale year (mode) 2013 2013 2012
  Seasonality—transactions between  
  June and September (%)

36.9 37.2 35.3 

Property characteristics
  Age of property (years) 60.27 (0–148) 65.13 (0–148) 32.04 (1–130)
  Size of property (ft2) 1,636 (275–9,552) 1,726 (339–9,552) 1,110 (275–4,830)
  AV/RMV ratio 65.19 (8–100) 62.83 (8–100) 78.61 (27–100)

Regional characteristics
  School quality—out of 100 71.07 (27–93) 69.35 (27–93) 81.04 (27–93)
  Distance to CBD (mi) 4.2 (1–9.5) 4.5 (1–9.5) 2.8 (1–9.5)
  Walk score—out of 100 63.82 (6–97) 61.73 (6–97) 75.93 (6–97)
  Crime rate per 1,000 residents 81.87 (10–1270) 70.3 (10–1270) 148.6 (10–1270)

Bicycle facility characteristics
  Distance to nearest bike facility (ft) 3,602 (29–21,206) 3,755 (40–21,206) 2,713 (29–20,523)
  Bike facility length (ft) 3,896 (0–18,896) 3,661 (0–18,796) 5,260 (0–18,896)

Note: CBD = central business district. Values in parentheses represent the minimum and maximum values  
of each variable.
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and less subject to large variations in property tax liabilities. Higher 
crime rates were negatively associated with property values, which 
indicated a clear preference for neighborhood safety. Higher walk 
scores, however, were negatively correlated with SFH property values 
and positively correlated with MFH property values. This finding 
revealed an inherent difference in the preferences for the density of 
neighborhood amenities within walking distance (e.g., SFH buyers 
put higher value on privacy near their homes) or in differences in 
transportation patterns (e.g., SFH owners may drive more) between 
buyers of the two property types. Sale year fixed-effect coefficients 
showed that the real estate market dipped in 2011 compared with 
2010 (base year) but indicated a recovery in property prices, which 
started in 2012 and 2013. Homes that sold between June and Sep-
tember (i.e., Portland’s nonrainy season) tended to garner a price 
premium of $9,959 to $11,920 above those sold during the rainy 
season.

Closer proximity to advanced bike facilities and access to a denser 
network of these facilities within a ½-mi radius tended to contrib-
ute positively to property values. Each ¼ mi closer to the nearest 

facility represented a $686 premium for SFHs and $66 for MFHs 
(although for MFHs the effect was not statistically significant in this 
specification). In addition, an increase in the density of advanced 
bike facilities by a ¼ mi within a ½-mi radius of a property translated 
to approximately $4,039 and $4,712 in value for SFHs and MFHs, 
respectively. These effects were attenuated when neighborhood fixed 
effects were introduced in Models 3 and 4, which indicated that the 
neighborhood coefficients were capturing some of the price premiums 
from bike facilities, because properties within certain neighborhoods 
might have had homogeneous access to bike facilities. The estima-
tions showed that bike facility network density played a more sig-
nificant role in determining property values than simple proximity 
to facilities.

Given the risks of biased or inefficient coefficient estimates in 
the OLS model described earlier, the Lagrange multiplier test was 
used to identify spatial autocorrelation effects in the OLS model 
and to determine the appropriate SAR specifications. The test is 
commonly used in spatial econometric contexts, because the actual 
estimation of the spatial (unrestricted) model is not required to test 

TABLE 2  OLS Hedonic Regression Model Results

Variable SFH.1, Model 1 MFH.1, Model 2 SFH.2, Model 3 MFH.2, Model 4

Number of observations, n 17,163 2,959 17,163 2,959

Property characteristics
  Age of property (years) 281.04***

(29.65)
−377.60***

(45.91)
52.53*

(27.83)
−307.91***

(44.09)
  Size of property (ft2) 151.26***

(1.02)
230.53***

(2.93)
128.31***

(1.02)
228.18***

(2.75)
  AV/RMV ratio −410.67***

(61.92)
−64.70
(114.75)

−325.38***
(75.96)

90.90
(114.26)

Regional characteristics
  School quality—out of 100 1,274.47***

(59.42)
639.54***

(177.81)
694.55***
(84.54)

735.34***
(309.19)

  Distance to CBD (mi) −22,880.47***
(645.19)

−23.982.46***
(1,477.44)

na na 

  Walk score—out of 100 −678.66***
(72.82)

531.40***
(102.22)

na na 

  Crime rate per 1,000 residents −141.28***
(17.53)

−31.67***
(10.01)

na na 

Bicycle facility characteristics
  Distance to nearest bike  
    facility (ft)

−0.52**
(0.27)

−0.05
(0.53)

−0.08
(0.519)

−0.12
(1.46)

  Bike facility length (ft) 3.06***
(0.23)

3.57***
(0.36)

2.60***
(0.36)

0.46
(0.51)

Transaction characteristics
  Sale year (2011) −13,524.15***

(2,229.85)
−16,680.44***

(4,006.72)
−16,236.90***

(2,032.73)
−19,900.66***

(3,644.53)
  Sale year (2012) −4,232.12**

(2,139.88)
−10,207.24**

(4,076.16)
−6,162.62***
(1,999.65)

−15,395.83***
(3,783.18)

  Sale year (2013) 25,370.05***
(2,090.80)

10,082.32***
(3,935.21)

24,134.58***
(1,925.55)

6,779.81*
(3,643.04)

  Nonrainy season 11,919.76***
(1,486.17)

10,489.90***
(2,692.89)

10,227.27***
(1,321.68)

9,958.70***
(2,428.24)

Constant 107,871.30***
(9,279.54)

−24,196.06
(20,469.20)

155,495.40***
(10,827.44)

−17,785.11
(68,827.13)

R2 .728 .767 .788 .821

Adjusted R2 .728 .766 .786 .816

Note: na = not applicable; dependent variable is property sale price. Neighborhood fixed-effect coefficients are omitted for space in 
Models 3 and 4. Chow test is an econometric test that determines whether the coefficients in two linear regressions have differential 
impacts on different subgroups of the population. Chow test of the SFH and MFH models is significant, which indicates that the  
independent variables do have differential impacts on SFH and MFH property values. Therefore, this indicates the need to separate  
residential property sales into two groups to model the exact magnitude of impacts of each independent variable for the two residential types.
* Significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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for differences between the restricted OLS model and unrestricted 
spatial model (22, 32). Two spatial weighting matrix methods (i.e., 
4-nearest neighbors and 1-mi-distance neighbors) also were tested. 
The tests showed significant autocorrelation in lag term and error 
term in both the SFH and MFH models. It was found that spatial  
lag autocorrelation was stronger for SFHs, while spatial error auto-
correlation was stronger for MFHs. As hypothesized, these test results 
indicated that it was indeed necessary to estimate spatial regression 
models to avoid overestimation of the coefficients. Models 1 and 2 
were augmented with spatial autocorrelation terms. The results from a 
spatial lag model for SFHs (SFH.SAR or Model 5) and a spatial error 
model for MFHs (MFH.SAR or Model 6) are shown in Table 3. For 
both models, statistical tests (i.e., Akaike information criterion; log 
likelihood ratio) supported employment of the 4-nearest neighbors 
method to construct the spatial weighting matrix, which meant that 
the sale prices of the four nearest properties sold tended to have the 
largest impacts on the property price. The Akaike information crite-
rion and log likelihood ratios shown at the bottom of Table 3 further 

demonstrate that the spatial models showed better goodness of fit than 
the OLS models.

Compared with Models 1 to 4, the estimated coefficients of the 
SAR models in general showed the same signs, although with smaller 
magnitudes, which reinforced the assertion that OLS specifications 
tended to overestimate the effects of variables on property value. 
Again it was found that closer proximity to advanced bike facilities 
and access to a denser network of these facilities within a ½-mi radius 
tended to contribute positively to property values. For SFHs, each  
¼ mi closer to the nearest advanced bike facility increased the prop-
erty value by $1,571. An additional ¼ mi of facility density increased 
values by $1,399. MFHs gained only $211 for each ¼ mi of proxim-
ity to advanced bike facilities. However, they experienced a large 
increase of $3,683 with an additional ¼ mi of facility density within 
their buffer zone. These coefficient estimates showed that access to 
advanced bike facilities translated to statistically significant positive 
price premiums on all residential properties. For MFHs, however, 
the density of the bike network played a much more significant role 
in determining property values than proximity to facilities. Through 
incorporation of spatial autocorrelation, the coefficient estimates 
appeared to be more robust, with improvements to the overall model 
fit compared with the OLS models, which the Akaike information 
criterion and log likelihood ratios (typical goodness-of-fit tests for 
spatial models) show at the bottom of Table 3.

POLICY APPLICATION AND DISCUSSION

To illustrate the policy applicability of this research as a tool in 
the decision-making and resource-allocation processes, estimated 
coefficients were applied to a scenario with a proposed 6-mi signa-
ture active transportation infrastructure concept, the Portland Green 
Loop. The Green Loop fits well into the definition of advanced bike 
facilities, with its high levels of infrastructure investment to provide 
separated bike lanes and bike paths, and connections through exist-
ing or proposed parks and other safety improvements such as traffic 
signals and lighting.

Multnomah County certified tax rolls were used for all residen-
tial properties in 2013 (i.e., 174,453 properties: 156,052 SFHs and 
18,401 MFHs). The study found that the Green Loop either decreased 
the proximity to the nearest advanced bike facility or increased the 
density of the bike facility network for 12,135 households. Although 
the additional infrastructure did not translate into large changes in 
proximity to the nearest bike facility for most properties, it did sig-
nificantly increase the density of bike facility length within a ½-mi 
buffer zone of each property. In other words, more potential impacts 
would be expected to result from the increase in the bike facility 
network density rather than from ease of access.

The application of coefficient estimates from the OLS and SAR 
model specifications for SFHs and MFHs (i.e., Models 1, 2, 5, 
and 6) showed that the introduction of the Green Loop in general 
would increase property values. The OLS models predicted average 
increases of approximately 1.77% for SFHs and 8.22% for MFHs, 
while SAR models predicted attenuated increases of 1.02% and 
6.42% for the two property types, respectively. Because the Green 
Loop is designed as a city center infrastructure investment, the geo-
graphic distribution of the residential property value impacts tended 
to be more concentrated in the city center (Figure 4). In addition, only 
very limited numbers of SFHs were located in these neighborhoods. 
By contrast, more than half of all MFHs in the city were located 
within the range of impact of the Green Loop, which accentuated 

TABLE 3  SAR Hedonic Model Results

Characteristic
SFH.SAR, 
Model 5

MFH.SAR, 
Model 6

Number of observations, n 17,163 2,959

Property characteristics
  Age of property (years) 95.64***

(20.41)
−304.45***

(44.94)
  Size of property (ft2) 117.64***

(0.99)
228.38***

(2.99)
  AV/RMV ratio −326.87***

(48.45)
104.47

(119.95)

Regional characteristics
  School quality—out of 100 516.87***

(41.64)
461.06

(188.41)
  Distance to CBD (mi) −10,393.59***

(438.66)
−25,713.60***

(2,562.96)
  Walk score—out of 100 −10.93

(−)
461.06**

(188.41)
  Crime rate per 1,000 residents −71.45***

(11.86)
−26.85
(19.51)

Bicycle facility characteristics
  Distance to nearest bike  
  facility (ft)

−1.19***
(0.17)

−0.16
(0.99)

  Bike facility length (ft) 1.06***
(0.17)

2.79***
(0.67)

Transaction characteristics
  Sale year (2011) −13,422.31***

(1,959.80)
−16,096.37***

(3,143.64)
  Sale year (2012) −4,347.16**

(1,750,70)
−9,778.45***
(3,330.92)

  Sale year (2013) 25,544.81***
(1,796.51)

14,283.81***
(3,185.97)

  Nonrainy season 10,118.49***
(1,285.99)

7,877.64***
(2,032.32)

Constant 5,375.05***
(1,347.15)

−9,875.86
(34,235.05)

AIC (AIC for OLS models) 437,438
(441,577)

73,253
(74,396)

Log likelihood (log likelihood 
 for OLS models)

−218,703
(−220,773)

−36,612
(−37,181)

Note: AIC = Akaike information criterion; dependent variable is property  
sale price.
* Significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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further the potential real estate market impact of such a large-scale 
project.

CONCLUSION

Many cities are investing in street improvement and infrastructure 
upgrade projects to provide better bike access and more complete 
bike networks. Still, consumer preferences and the economic value of 
bike infrastructure and bike facilities remain lingering questions, 
which many practitioners, planners, and policy makers are struggling 
to answer. The importance of public amenities (e.g., proximity to 
green space, transportation networks, school quality) in the determi-
nation of property value is well documented. However, fewer studies  
have delved into understanding how households value access to 
urban greenways or on-street bike facilities through the impact 
on property values. The present study focused on examining the 
relationship between advanced bike facilities, which tend to attract 
larger numbers of users, and the impact on residential property val-
ues. The study further contributed to the research literature through 
the use of two measures of these facilities that may affect property 
values: ease of access (distance) and extensiveness of bike network 
(density).

After it was found that the determinants of SFH and MFH property 
values were structurally different, the study proceeded to estimate 
separate OLS hedonic pricing models in Portland, Oregon, and to 
control for property, regional, transaction, and bike facility charac-
teristics, including distance and density measures. It was found that 
proximity to advanced bike facilities had significant and positive 
effects on SFH and MFH property values, which was consistent 
with earlier research. The results also showed that the extensive-
ness of the bike network was a positive and statistically significant 
contributor to the property prices for all property types, even after 
controlling for proximity to bike facilities and other internal and 
external variables. The model specifications then were enhanced with 
spatial autocorrelation effects to prevent overestimation. They yielded 
similar but slightly tempered positive and statistically significant 

impacts of proximity and density of advanced bike facilities on 
residential property values.

It is hoped that these study results will provide essential informa-
tion to aid those who seek to make policy or resource allocation 
decisions. However, caution is urged against the inference of causal 
relationships from these findings. Further research is necessary to 
establish the pre- and posttreatment effects from different types 
of bike facility investments. The study was able to define advanced 
bike facilities within the context of Portland, Oregon. However, a 
precise and comprehensive definition of what constitutes different 
levels of infrastructure investment or bike facility desirability is 
likely to be necessary to further validate the research methodology 
across multiple urban areas. Finally, the incorporation of additional 
bike facility types (i.e., on-street and off-street trails) into sensitivity 
analysis of different buffer zone distances will further contribute to 
a better understanding of how these infrastructure improvements 
provide value to urban residents.
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